SET THEORY HOMEWORK 3

Due Wednesday, October 16.

Problem 1. Let κ be a regular uncountable cardinal.

- (1) Suppose that $\tau < \kappa$ and $\langle C_i | i < \tau \rangle$ is a family of club subsets of κ . Show that $\bigcap_{i < \tau} C_i$ is also a club subset of κ .
- (2) Let $G : \kappa \to \kappa$ be any function. Show that the set $C = \{\gamma < \kappa \mid (\forall \alpha < \gamma)(G(\alpha) < \gamma)\}$ is a club subset of κ .

Problem 2. Suppose that $\mathcal{F} \subset \mathcal{P}(\kappa)$ is a κ -complete normal ultrafilter on κ . I.e. \mathcal{F} satisfies the following:

- for all $A \subset \kappa$, $A \in \mathcal{F}$ or $\kappa \setminus A \in \mathcal{F}$,
- if $\tau < \kappa$ and $\{A_{\xi} \mid \xi < \tau\}$ are sets in \mathcal{F} , then $\bigcap_{\xi < \tau} A_{\xi} \in \mathcal{F}$.
- for all regressive functions $f : \kappa \to \kappa$ (regressive means that $f(\alpha) < \alpha$ for all α), there is $\gamma < \kappa$ such that $f^{-1}(\gamma) := \{\alpha < \kappa \mid f(\alpha) = \gamma\}$ is in \mathcal{F} .

Show that \mathcal{F} is closed under diagonal intersections of length κ .

Recall that an inaccessible cardinal κ is a Mahlo cardinal if the set of regular cardinals below κ is stationary.

Problem 3. Let κ be an inaccessible cardinal.

- (1) Show that if κ is Mahlo, then κ is the κ -th inaccessible cardinal.
- (2) Let κ be the least inaccessible cardinal such that κ is the κ -th inaccessible cardinal. Then κ is not Mahlo. [Hint: use $f(\lambda) = \alpha$ where λ is the α -th inaccessible.]

Problem 4. Assume that V = L. Prove that $V_{\alpha} = L_{\alpha}$ iff $\alpha = \aleph_{\alpha}$. Here you can use the theorem that in V = L, GCH holds.

Problem 5. Suppose that $M \prec L_{\omega_1}$. Show that M is transitive. (Hint: for $X \in M$, take the \prec_L -least onto $f : \omega \to X$. Show that f is definable in L_{ω_1} from X and use this to show that $f \in M$. Also show $\omega \subset M$. Use these to prove that range of f is a subset of M)